## Region 4 Science Product Alignment, Chemistry Warm Up to Science: TEKS-Based Engagement Activities for Chemistry



| 2020 TEKS                                                                                                                                                                                                                                        | 2017<br>TEKS<br>Streamlined | Aligned                          | Not<br>Aligned | Notes |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------|----------------|-------|
| C.5(A) explain the development of the Periodic Table over time using evidence such as chemical and physical properties;                                                                                                                          | C.5(A)                      | 11<br>12                         |                |       |
| C.5(B) predict the properties of elements in chemical families, including alkali metals, alkaline earth metals, halogens, noble gases, and transition metals, based on valence electrons patterns using the PeriodicTable; and                   | C.5(B)                      | 13<br>14                         |                |       |
| C.5(C) analyze and interpret elemental data, including atomic radius, atomic mass, electronegativity, ionization energy, and reactivity to identify periodic trends                                                                              | C.5(C)                      | 15<br>16<br>17                   |                |       |
| C.6(A) construct models using Dalton's Postulates, Thomson's discovery of electron properties, Rutherford's nuclear atom, Bohr's nuclear atom, and Heisenberg's Uncertainty Principle to show the development of modern atomic theory over time; | C.6(A)                      | 18<br>19<br>20                   |                |       |
| C.6(B) describe the structure of atoms and ions, including the masses, electrical charges, and locations of protons and neutrons in the nucleus and electrons in the electron cloud;                                                             |                             |                                  |                |       |
| C.6(C) investigate the mathematical relationship between energy, frequency, and wavelength of light using the electromagnetic spectrum and relate it to the quantization of energy in the emission spectrum;                                     | C.6(B)                      | 21<br>22                         |                |       |
| C.6(D) calculate average atomic mass of an element using isotopic composition; and                                                                                                                                                               | C.6(C)                      | 25<br>26                         |                |       |
| C.6(E) construct models to express the arrangement of electrons in atoms of representative elements using electron configurations and Lewis dot structures.                                                                                      | C.6(D)                      | 27<br>28<br>29                   |                |       |
| C.7(A) construct an argument to support how periodic trends such as electronegativity can predict bonding between elements;                                                                                                                      |                             |                                  |                |       |
| C.7(B) name and write the chemical formulas for ionic and covalent compounds using International Union of Pure and Applied Chemistry (IUPAC) nomenclature rules;                                                                                 | C.7(A)<br>C.7(B)            | 30<br>31<br>32<br>33<br>34<br>35 |                |       |
| C.7(C) classify and draw electron dot structures for molecules with linear, bent, trigonal planar, trigonal pyramidal, and tetrahedral molecular geometries as explained by Valence Shell Electron Pair Repulsion (VSEPR) theory; and            | C.7(E)                      | 36<br>37<br>38<br>41<br>42       |                |       |
| C.7(D) analyze the properties of ionic, covalent, and metallic substances in terms of intramolecular and intermolecular forces.                                                                                                                  | C.7(C)<br>C.7(D)            | 39<br>40                         |                |       |
| C.8(A) define mole and apply the concept of molar mass to convert between moles and grams;                                                                                                                                                       | C.8(A)                      | 43<br>44                         |                |       |
| C.8(B) calculate the number of atoms or molecules in a sample of material using Avogadro's number;                                                                                                                                               | C.8(B)                      | 45<br>46<br>47                   |                |       |

## Region 4 Science Product Alignment, Chemistry Warm Up to Science: TEKS-Based Engagement Activities for Chemistry



| 2020 TEKS                                                                                                                                                                                            | 2017<br>TEKS<br>Streamlined | Aligned                                | Not<br>Aligned | Notes               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------|----------------|---------------------|
| C.8(C) calculate percent composition of compounds; and                                                                                                                                               | C.8(C)                      | 48                                     |                |                     |
| C.8(D) differentiate between empirical and molecular formulas.                                                                                                                                       | C.8(D)                      | 49<br>50                               |                |                     |
| C.9(A) interpret, write, and balance chemical equations, including synthesis, decomposition, single replacement, double replacement, and combustion reactions using the law of conservation of mass; | C.8(E)                      | 51<br>52<br>53                         |                |                     |
| C.9(B) differentiate among acid-base reactions, precipitation reactions, and oxidation-reduction reactions;                                                                                          | C.8(F)                      | 79<br>80<br>81                         |                |                     |
| C.9(C) perform stoichiometric calculations, including determination of mass relationships, gas volume relationships, and percent yield; and                                                          | C.8(G)                      | 54<br>56<br>64<br>65                   |                |                     |
| C.9(D) describe the concept of limiting reactants in a balanced chemical equation                                                                                                                    | C.8(H)                      | 55                                     |                |                     |
| C.10(A) describe the postulates of the kinetic molecular theory;                                                                                                                                     | C.9(B)                      | 66                                     |                |                     |
| C.10(B) describe and calculate the relationships among volume, pressure, number of moles, and temperature for an ideal gas; and                                                                      | C.9(A)                      | 57<br>58<br>59<br>60<br>61<br>62<br>63 |                |                     |
| C.10(C) define and apply Dalton's law of partial pressure.                                                                                                                                           | C.9(A)                      | 61<br>63                               |                |                     |
| C.11(A) describe the unique role of water in solutions in terms of polarity;                                                                                                                         | C.10(A)                     | 67                                     |                |                     |
| C.11(B) distinguish among types of solutions, including electrolytes and nonelectrolytes and unsaturated, saturated, and supersaturated solutions;                                                   | C.10(E)                     | 72<br>73<br>74                         |                |                     |
| C.11(C) investigate how solid and gas solubilities are influenced by temperature using solubility curves and how rates of dissolution are influenced by temperature, agitation, and surface area;    | C.10(F)                     | 75<br>76                               |                |                     |
| C.11(D) investigate the general rules regarding solubility and predict the solubility of the products of a double replacement reaction;                                                              | C.10(B)                     | 68<br>69                               |                |                     |
| C.11(E) calculate the concentration of solutions in units of molarity; and                                                                                                                           | C.10(C)                     | 70                                     |                |                     |
| C.11(F) calculate the dilutions of solutions using molarity.                                                                                                                                         | C.10(D)                     | 71                                     |                |                     |
| C.12(A) name and write the chemical formulas for acids and bases using IUPAC nomenclature rules;                                                                                                     | C.7(A)<br>C.7(B)            | 30<br>31                               |                | continued next page |

## Region 4 Science Product Alignment, Chemistry Warm Up to Science: TEKS-Based Engagement Activities for Chemistry



| 2020 TEKS                                                                                                                                                                       | 2017<br>TEKS<br>Streamlined | Aligned              | Not<br>Aligned | Notes                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------|----------------|------------------------------------------------------|
| C.12(A) name and write the chemical formulas for acids and bases using IUPAC nomenclature rules;                                                                                | C.7(A)<br>C.7(B)            | 32<br>33<br>34<br>35 |                |                                                      |
| C.12(B) define acids and bases and distinguish between Arrhenius and Bronsted-Lowry definitions;                                                                                | C.10(G)                     | 77<br>78             |                |                                                      |
| C.12(C) differentiate between strong and weak acids and bases;                                                                                                                  | C.10(E)                     | 84                   |                |                                                      |
| C.12(D) predict products in acid-base reactions that form water; and                                                                                                            | C.10(G)                     | 77<br>78             |                |                                                      |
| C.12(E) define pH and calculate the pH of a solution using the hydrogen ion concentration.                                                                                      | C.10(H)                     | 82<br>83             |                |                                                      |
| C.13(A) explain everyday examples that illustrate the four laws of thermodynamics;                                                                                              |                             |                      |                |                                                      |
| C.13(B) investigate the process of heat transfer using calorimetry;                                                                                                             | C.11(B)                     | 87<br>88             |                |                                                      |
| C.13(C) classify processes as exothermic or endothermic and represent energy changes that occur in chemical reactions using thermochemical equations or graphical analysis; and | C.11(C)                     | 89<br>90<br>92       | 91             | Students no longer need to calculate energy changes. |
| C.13(D) perform calculations involving heat, mass, temperature change, and specific heat.                                                                                       | C.11(D)                     | 93<br>94             |                |                                                      |
| C.14(A) describe the characteristics of alpha, beta, and gamma radioactive decay processes in terms of balanced nuclear equations;                                              | C.12(A)                     | 97<br>98<br>99       |                |                                                      |
| C.14(B) compare fission and fusion reactions; and                                                                                                                               | C.12(B)                     | 100                  |                |                                                      |
| C.14(C) give examples of applications of nuclear phenomena such as nuclear stability, radiation therapy, diagnostic imaging, solar cells, and nuclear power.                    |                             |                      |                |                                                      |
| REMOVED                                                                                                                                                                         | C.4(A)                      |                      | 3<br>4         |                                                      |
| REMOVED                                                                                                                                                                         | C.4(B)                      |                      | 5<br>6         |                                                      |
| REMOVED                                                                                                                                                                         | C.4(C)                      |                      | 7<br>8         |                                                      |
| REMOVED                                                                                                                                                                         | C.4(D)                      |                      | 9<br>10        |                                                      |
| REMOVED DURING STREAMLINING, 2017                                                                                                                                               | C.6(C)*                     |                      | 23<br>24       |                                                      |
| REMOVED                                                                                                                                                                         | C.11(A)                     |                      | 85<br>86       |                                                      |
| REMOVED DURING STREAMLINING, 2017                                                                                                                                               | C.11(E)*                    |                      | 95<br>96       |                                                      |